A refinement of normal approximation to Poisson binomial

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A refinement of normal approximation to Poisson binomial

Let X1,X2, . . . ,Xn be independent Bernoulli random variables with P(Xj = 1) = 1 − P(Xj = 0)= pj and let Sn := X1 +X2 + ···+Xn. Sn is called a Poisson binomial random variable and it is well known that the distribution of a Poisson binomial random variable can be approximated by the standard normal distribution. In this paper, we use Taylor’s formula to improve the approximation by adding some...

متن کامل

Uniform asymptotics of Poisson approximation to the Poisson-binomial distribution

New uniform asymptotic approximations with error bounds are derived for a generalized total variation distance of Poisson approximations to the Poisson-binomial distribution. The method of proof is also applicable to other Poisson approximation problems. MSC 2000 Subject Classifications: Primary 62E17; secondary 60C05.

متن کامل

Multivariate Poisson–Binomial approximation using Stein’s method

The paper is concerned with the accuracy in total variation of the approximation of the distribution of a sum of independent Bernoulli distributed random d–vectors by the product distribution with Poisson marginals which has the same mean. The best results, obtained using generating function methods, are those of Roos (1998, 1999). Stein’s method has so far yielded somewhat weaker bounds. We de...

متن کامل

A Nonuniform Bound for the Approximation of Poisson Binomial by Poisson Distribution

It is well known that Poisson binomial distribution can be approximated by Poisson distribution. In this paper, we give a nonuniform bound of this approximation by using Stein-Chen method.

متن کامل

On the normal approximation to symmetric binomial distributions

The optimal constant over square root of n error bound in the central limit theorem for distribution functions of sums of independent symmetric Bernoulli random variables is 1/ √ 2πn.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2005

ISSN: 0161-1712,1687-0425

DOI: 10.1155/ijmms.2005.717